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Hot structures test techniques developed and applied by the Aerostuctures

Branch of the NASA Ames Research Center, Dryden Flight Research Fa-

cility are presented. Topics covered include the data acquisition and control

of testing, the quartz lamp heater systems, current strain and temperature
sensors, and hot structures test techniques used to simulate the flight ther-

mal environment in the laboratory.

INTRODUCTION

At NASA Ames Research Center, Dryden Flight Research Facility, the Aerostructures Branch personnel

have been involved with hot structures testing since the early 1960's beginning with the Mach 6, X-15 air-

plane. Early hot structures test programs at NASA Ames-Dryden focused on the operational testing required

to support the X-15 flight test program, such as developing and demonstrating structural fixes to prevent the

nose and main landing gear from deploying in flight at Mach 4, qualifying the canopy hooks under thermal

load, and qualifying the ball nose airdata sensor system. Early hot structures research projects focused on

developing laboratory test techniques to accurately simulate the flight thermal profiles [1-2]. Duplication

of the flight aerodynamic heating in the laboratory was essential to identifying the thermal response of the

calibrated strain gage instrumentation that was installed in the aircraft for the purpose of measuring air-

loads or structural loads. Once the thermal response of the calibrated strain gages was determined from the

laboratory tests, then the resulting flight airloads or structural loads could be determined [3-5].

At the conclusion of the X-15 flight test program, laboratory tests on a horizontal stabilizer and wing

panel were instrumental in developing the thermal loads simulation techniques that were eventually ap-

plied to the YF-12A airplane. The YF-12A airplane was the latest hot structures flight vehicle involved

in a major thermal loads research program, and the culmination of this research program is extensively

documented [6]. Subsequent to the X-15 and YF-12A flight programs, the Aerostructures Branch personnel

have been involved in numerous hot structures test programs to develop test methods and measurement tech-

niques that focused on providing test data for correlation with results from analytical codes. In November

1988, the Aerostructures Branch at NASA Ames-Dryden, with participation from Langley Research Center,

sponsored a three-day workshop that focused on the correlation of hot structures test data with analysis. The

purpose was to provide a means to quickly disseminate the results of over two decades of experience with hot

structures testing to members of the technical community. A summary of the workshop was published [7].



Thispaperwill drawlimitedmaterial'fromtheworkshopandprovidea more formal documentation of

topics that focus on hot structures test techniques employed at the Aerostructures Branch at NASA Ames-

Dryden. Topics covered include the test data acquisition and control system, the quartz lamp heater systems,

current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal

environment in the laboratory.

Recognition is given to the Structures Test Branch at the Wright Research and Development Center,
which has also contributed immensely to the development of hot structures test methods. The work has

included both graphite heater systems and Vortek heater systems (Vortek Industries, Ltd., Vancouver, BC,

Canada) that provide higher heat fluxes and temperatures than quartz lamp heater systems. No attempt to

cover testing with these systems is made in this paper.

DATA SYSTEMS

Data acquired often differ in some degree from expected results. One reason for this occurrence is the

use of practical data acquisition and control equipment that cause data deterioration. This arises because

of uncertainties that creep into measurements provided by the equipment. The data acquisition and con-

trol system in service at NASA Ames-Dryden was designed to minimize these uncertainties. This section

describes the system features.

Figure 1 shows an overview block diagram of the data acquisition and control system (DACS) used in

NASA Ames-Dryden's Thermostructures Research Facility. Transducers are appropriately attached to a
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testspecimenwhereby analog input sites receive the transducer lead wires and take the measurements of the

response to the test environment imposed. The information obtained is sent to a satellite computer system _

which provides information for real-time analysis monitoring and operational monitoring and control. In-
formation is also sent to the power control computer which distributes the requests for power-level changes

that cause a particular temperature control zone to approach the desired temperature as a function of time.

There are 512 power control channels available, 20 MW of electrical power available to apply to a test

set-up, and 1280 channels of data acquisition available. The main computer system is the "brain" behind

the DACS. It is used to acquire and process data from three satellite systems, provide real-time displays

of processed data, and to control the activities of the thermal and mechanical loads control systems. The

DACS has been designed to provide closed-loop control on temperature measured by type K, type S, type

J, and type B thermocouples.

The temperature control system of the DACS, like all closed-loop temperature control systems, can only

operate in accordance with the feedback it receives. Therefore, the controlled temperature will be at the point
of the feedback measurement on the test article, with neighboring areas differing in temperature from the

feedback point. There are control errors and errors caused by feedback uncertainty. The control error refers

to the inability of the control system to do a perfect job of matching the commanded temperature to the indi-

cated temperature for the control channel. The indicated temperature has its own set of uncertainties related

to thermocouple wire manufacturing tolerances, data acquisition tolerances, and data processing tolerances.

Figure 2 depicts the control performance specification for the DACS system used in the Thermostructures

Temperature
error,

oF

60- Heating rate

(_ 100 °F/sec _<150 °F/sec _

40 - (_ 50°F/sec
(_ 10 °Flsec __ _

20 (_) 0 °F/sec _ (_)

0 I I I I I I
-500 0 500 1000 1500 2000 2500

Programmed temperature, °F

Fig. 2 DACS temperature control performance.

I
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Research Facility. The heating rates range from 0 °F/sec, or a steady hold temperature, to 150 °F/sec, which

is the maximum heating rate of the system. Notice that at lower temperatures and at lower temperature rates

of change, the system performance errors are smaller. The closed-loop thermal control process is updated

four times a second. Data recording rates can be varied from 1 sample/sec to 12 samples/sec for all 1280

channels. However, to acquire highly transient data, rates as high as 150 samples/sec have been achieved

using a limited number of channels.

Figure 3 shows the DACS control performance for a nominal flight profile of a hypersonic vehicle that

achieves a maximum temperature of 900 °F with a maximum heating rate of 20 °F/sec. The DACS does an

excellent job of control with deviations typically under -t-4 °F for the temperature profile shown.
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Fig. 3 Thermal test data.

For effective real-time monitoring of large tests, that is, tests with many control zones, such as the 470

separate temperature profiles required to heat the YF-12A airplane, the deviations of Fig. 3(b) are displayed

in a bar-chart format as shown in Fig. 4. This display enables the test engineer to effectively monitor all of

Fig. 4 Bar-chart display of profile deviations.

the heating zones, simultaneously. Should the deviations from the prescribed profiles exceed predetermined

limits, the bars first change color. Then if the temperature is not brought under satisfactory control and the

deviations become even larger, the system will automatically shut down. The data shown in Fig. 4 are taken

from a heating test of the hypersonic wing test structure (HWTS) after the power to the quartz lamps was

intentionally turned off. The data from the 89 control thermocouples show, as expected, that all of the zones

are at temperatures below the desired, or programmed, temperature profile. A more detailed description of

the DACS has been published [8].
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INSTRUMENTATION

Thermocouples and strain gages are the principle sensors used in hot structures testing to measure tem-

perature and strain, respectively. Figure 5 summarizes the temperature range and associated error limits for
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Fig. 5 Thermocouple specifications.

the type K and type S thermocouples. Development of an infrared sensor system for temperature measure-

ment and thermal control is underway for use on test articles on which attachment of thermocouples has

not been fully successful, such as carbon-carbon structures. Results of this work are beyond the scope of

this paper.

Table 1 shows information on the strain gages used at NASA Ames-Dryden, including the method used

for attachment, the temperature range to which they were subjected during testing, and the signal condi-

tioning used. The current approximate cost of each gage is also shown, since that factor tends to influence

the selection of the gage. Extensive experience has been gained in the use of foil, weldable, and capac-

itive gages over a wide range of temperatures. Two types of iron-chromium-aluminum (Fe-Cr-A1) alloy

high-temperature gages (BCL-3 and ME II NZ 2100) are presently undergoing their first application on a

laboratory structure.

Table 1. Strain gages used in hot structures testing.

Method of Temperature Signal Approximate

Type attachment range, °F conditioning cost, each gage

Foil Adhesive -320 to 600 DC $20

Weldable Spot welding -320 to 1,200 DC $700

Capacitive Spot welding - 320 to 1,500 AC ($1,000) $1,500

Fe-Cr-A1 alloy Plasma-flame spray 70 to 1,900 DC 20 to 200

When applied to a hot structure, strain gage accuracy is dependent upon several factors including the gage

factor and its change with temperature, the drift of the gage, and the apparent strain characteristics of the gage

when applied to the test article material. Satisfactory gage factor and drift characteristics have been demon-

strated for the foil, weldable, and capacitive gages. Limited data on the Fe-Cr-A1 alloy gages also suggest

satisfactory gage factor and drift characteristics [9]. The apparent strain then becomes the gage characteristic



thathasthegreatestimpactontheaccuracyofstrainmeasurementatelevatedtemperature.Oftentheappar-
entstraincanbemuchlargerthantheintendedstrainmeasurement.Theapparentstrainforresistancegages
is afunctionof thedifferencebetweenthecoefficientof thermalexpansionof thegageandthematerialto
whichit isattached,andthechangein resistivityof thegagewithchangein temperature.Becauseof itsde-
signthecapacitivegage(Fig.6)hasnosignificantapparentstrain.Sincetherodmaterialandthetestmaterial

Outer capacitor plate

Inner capacitor

Rod material same as material
of specimen under test

__'_ Attachment ribbons

Nominal gage length: 2.54 cm (1 in.) 900558

Fig. 6 High-temperature capacitive strain gage.

are the same, no apparent strain corrections should be needed. But because the rod is positioned off the

surface of the test article, there is usually a difference in temperature between the rod and the surface which

can produce a measurement error. A thermocouple attached to the rod and a thermocouple attached to the

test article directly below the rod provide temperatures to compute the temperature difference used to correct
the strain data.

Apparent strain tests must be performed prior to testing any structure that is instrumented with strain

gages to measure strain or stress at elevated temperature. For foil gages, these tests consist of mounting

several strain gages from a common batch on a sample material of the test article. The sample material

or coupon is then heated slowly to achieve a thermal-stress-free temperature rise after which the coupon is

allowed to cool slowly. Several cycles are run and the data are collected and analyzed. Typical apparent
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strain curves for resistance gages are shown in Fig. 7. Figure 7(a) shows the apparent strain curves, from

room temperature to 500 °F, for eight foil gages attached to a titanium coupon. As seen in the figure, the

100

Apparent 0 -

strain 8 foil strain gages -/

in./in. -100 -

-200 I I I I I
0 100 200 300 400 500

Temperature, °F 900529

(a) Foil gages.

Fig. 7 Apparent strain curves for resistance gages.

foil strain gages exhibited little variation in apparent strain among the eight sensors. The apparent strain

variation with temperature seen in these tests corresponded closely to the manufacturer's prediction.

Weldable strain gages also tend to generate repeatable apparent strain curves for multiple thermal cycles.

However, the curves tend to vary widely from gage to gage as shown in Fig. 7(b) by the range of apparent
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(b) Weldable gages.

Fig. 7 Continued.

strain for 24 weldable strain gages. The figure also depicts a method to establish an apparent strain curve for

each gage before it is welded to the test article. A clamping device is manufactured from the same material



as that to which the gage will be attached. Then, using the clamping device as a test coupon, apparent strain

curves are obtained for each gage to be used. This approach may seem to be tedious and costly, but it is

necessary to obtain accurate strain measurements when using these gages at high temperatures.

The magnitude of the apparent strain varies for different Fe-Cr-AI alloy gages depending on the material

to which they are attached. However, the characteristic behavior of the apparent strain with temperature is

the same, since these types of gages are manufactured from the same basic material. Figure 7(c) represents

1 1st cycle heat-up
.... 1st cycle cool-down & 2nd cycle heat-up

12,000 -----.- 2nd cycle cool-down & 3rd cycle heat-up

8000

Strain,
in./in. 4000

0

I
.4000 I _"_1 '_'- I I I I

0 400 800 1200 1600 2000

Temperature, °F good1

(c) Fe-Cr-A1 alloy gages.

Fig. 7 Concluded.

data obtained from laboratory tests of one of these gages and these data are used to demonstrate their unique

behavior. This figure shows the apparent strain for three heat-up and cool-down cycles over a temperature

range from room temperature to 1900 °F. The gages were mounted on an Inconel 601 bar (Inco Alloys

Intemational, Inc., Huntington, WV). As seen in the figure, the second cycle heat-up traces the first cycle

cool-down and the third cycle heat-up traces the second cycle cool-down. This characteristic exists because

the strain at the maximum temperature is invariant, and essentially all metallurgical phase transformations

occur during the cool-down portion of the cycle below about 1200 °F. Furthermore, as more cycles are run,

the data for both heat-up and cool-down cycles converge into one curve. Test data show [9] a maximum

deviation of 160 # in.An, between the first cycle cool-down and the second cycle heat-up. The large appar-

ent strain values suggest that generating apparent strain data from coupon tests to correct data from gages

installed on a test panel is not a valid procedure. In addition, individual apparent strain curves must be gen-

erated from each gage as installed on the test structure. If this is indeed a requirement, then the scope of test

programs in which these gages can be used is very limited. However, these gages are currently being used in

a force-stiffness technique for measuring the buckling load on a buckling-critical panel. In this application,

mechanical loads are applied after the panel is stabilized at an elevated temperature. Therefore, apparent

strain is not a factor. Reference [9] contains a more thorough presentation and comparison of the unique

characteristics of the Fe-Cr-Al alloy gages.

QUARTZ LAMP HEATING SYSTEM

Presently, quartz lamps are used exclusively to heat the test articles in the Thermostructures Research

Facility. This section presents a simple, but relatively accurate method to calculate the available heat flux



for infraredradiationheatingsystems.Alsodiscussedis the importance of test specimen emissivity on the

power required.

Figure 8 presents the characteristics of the 200 W/in. T-3 quartz lamp. The values shown are for a lamp

with a 10-in.-lighted length. By multiplying the values shown by the ratio of lamp length, this figure can be

12,000 I

4000I- / / I/- Double

ed voltage

0 200 400 600

Volts

Fig. 8 Characteristics of 200 W/in., T-3, 10-in. quartz lamps.

- 2O

m

0
800

9OO562

10 Amps

used for 200 W/in. T-3 lamps of other lengths. As shown, this lamp produces 2000 W at rated voltage and

6000 W at double rated voltage.

The equation for calculating the available heat flux for an infrared radiation heater is

where

qro / qr.

qn = qraax( qT o/q_r,_) -- qloss -- qend e f f

= maximum power output of the quartz lamps in Btu/ft2-sec

= ratio of radiant heat flux from the lamp filament at a specimen temperature

of To to the heat flux received by a specimen at a temperature of Tn

= heat flux loss of heater system in Btu/ft2-sec

= end-effects heat flux loss due to heater design in Btu/ft2-sec

(1)

The ratio of radiant heat flux (qro/qr,,) is derived from the difference between the surface temperature

of the test specimen and the filament temperature of the quartz lamp. This ratio is shown in Fig. 9.
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Fig. 9 Ratio of radiant heat flux.

A filament temperature of 4000 °F exists for quartz lamps that are operated at rated voltage (240 V),

and 5400 °F is the filament temperature when the lamps are operated at double rated voltage (480 V). The

ratio of radiant heat flux (qr0/qr,) times the maximum power output of the quartz lamps (qmax) represents

the maximum possible available heat flux for a perfect heating system with zero losses.

The heat flux loss of the heater system (qt_a) includes the losses caused by radiation, conduction, and

convection. Usually, each of these losses has to be calculated separately. These calculations are not free

from errors since it is necessary to make several assumptions to perform the calculations. To circumvent the

time-consuming process of calculation of heat losses resulting from each mode of heat transfer, an empirical

curve of the total heat flux loss as a function of specimen temperature was derived from past heating tests

using water-cooled polished aluminum reflectors and stainless steel reflectors. This curve is shown in Fig. 10
and is based on a specimen emissivity of approximately 0.85. Since the heating tests used to derive this

q loss '

Btu

ft2.sec

100

50

0

m

Extrapolated j

_Experimenta_/_j /

2000 4000
Specimen temperature, °F

90O564

Fig. l0 Heat flux loss.
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curvewereconductedto only 2500°F, thecurveis verifiedup to thattemperatureonly, andthepart
of thecurvefrom 2500°F to 4000 °F is an extrapolation. As previously mentioned, this curve repre-

sents the total heating loss from radiation, conduction, and convection, but does not consider heat loss

caused by end effects. Heat loss resulting from end effects (boundary conditions) will be discussed in a

subsequent section.

Figure 11 shows the power required as a function of heater area for specimen temperatures up to 3800

°F and heating rates from steady state (SS) up to 10 Btu/ft2-sec. The calculations were made for a specimen

emissivity of 0.85. At very high temperatures (3500 °F to 3800 °F), the slope of the curve is such that

the heater area is quite small. In the Thermostructures Research Facility the maximum power available is
20 MW.

5°F

SS = Steady state
lO Emissivity:0.85

0 I I I I I
0 500 1000 1500 2000 2500

Heater area, ft 2 9oo5e5

Fig. l I Power required as a function of heater area.

HOT STRUCTURES TEST TECHNIQUES

Several important topics, which are directly related to testing with infrared quartz heaters, will be ad-

dressed in this section. A combination of laboratory test, flight test, and analytical data from a variety of

sources is presented in addressing control zone sizing for quartz lamp heating, quartz lamp distribution, test

specimen surface emissivity effects, and boundary conditions for thermal testing.
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Fig. 12 X-15 horizontal stabilizer structure with thermocouple locations.

The X-15 horizontal stabilizer, shown in Fig. 12, was of conventional semimonocoque construction.

Although Inconel-X was the primary material, the aft ribs and trailing-edge beam were a titanium alloy, and

the leading-edge beam was stainless steel. The total exposed surface area was about 52 ft 2. As shown in

the figure, the horizontal stabilizer was instrumented intemally with 121 thermocouples, with an additional

11 thermocouples located on the outer surface of the torque box extending inboard from the main beam. All

of this instrumentation was used for both flight and ground test measurements. A comprehensive report on

the heating simulation on the stabilizer is available [1].
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Infraredquartzlampswereusedtoprovideheatfluxfortheaerodynamicflightheatingsimulationper-
formedinthelaboratory.AsshowninFig.13,thelampsweremountedonpolishedstainlesssteelreflectors

ii!ii!i!ii

E-18908

Fig. 13 Quartz heater system for the X- 15 horizontal stabilizer.
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of the same shape and contour as the stabilizer; the reflectors were then positioned 5.5 4- 0.5 in. above and

below the stabilizer to form the primary heater. The quartz heating lamps were distributed on the reflector

with the highest densities over the main beam, leading-edge assembly, and trailing-edge beam. An analog

closed-loop control system was used to regulate lamp power and produce a programmed temperature-time

history on the stabilizer surface. Control feedback was provided by control thermocouples at particular
locations on the test article.

The distribution of lamps into zones (areas to be controlled by one thermocouple) is shown in Fig. 14.

All of the quartz lamps in any one zone were wired together in parallel. The distribution of lamps within

13



eachzonehelpedprovidetheproperdistributionof heatfluxoverthestabilizersurface.Figure14(a) shows

the initial configuration, which consisted of 222 12-in. 1000-W lamps for each reflector. The size of the 22

Quartz lamp
Zone boundary
Control thermocouple on

internal surface of skin
9OO567

(a) Initial.

Fig. 14 Lamp zoning for the X-15 horizontal stabilizer heating system.

control zones ranged from approximately 1.0 ft 2 to 3.9 ft2 , and the number of lamps in each zone ranged
from 11 to 26.

Preliminary heating-test results indicated that it would be necessary to increase the number of control

zones over the stabilizer surface to better simulate the flight-measured temperature distribution. Additional

lamps were also required at the leading edge and root rib. The fmal lamp zoning configuration, shown in

Fig. 14(b), consisted of 496 quartz lamps divided into 36 control zones for both the upper and lower surfaces.

\

[]

Quartz lamp
Zone boundary
Control thermocouple on

internal surface of skin
Control thermocouple on

root rib

(b) Final.

Fig. 14 Concluded.

900568
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Figure15showsanedgeviewof thehorizontalstabilizerwith thequartzheatersysteminplacearound
it. Towardtheleft of thefigure,theadditionalquartzlampsrequiredtoheattheleadingedgecanbeseen.
Becauseofthesteeptemperaturegradientgoingaftfromtheleadingedge(leftIorighl inthefigure),dividers
wereplacedbetweencontrolzonestopreventcoolerzonesfrombeingoverheatedbyadjacenthotterzones.

O_-_iGINAL PJ_,GF_2.

E_L.ACI'_A_qO WH!TE PHOTOGRAPN

Fig. 15 Heater assembly for heating simulation on the X-15 horizontal stabilizer.

900569
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Even though zone sizes had been reduced, temperature differences within zones still existed, as shown in

Fig. 16. Data are shown for two thermocouples (54 and 87). The thermocouples were installed to measure

Temperature,
oF

700

600 F (_ _ _ _ _- Thermocouple 54
500 I- _ _ _'_' _ /'- Thermocouple 87

J IF _ _ ._-'_ (Control)
400 I" _ l, _ _'_.

 oo OOt / .
,oof 4

0 _e (Thermocouple 87)

-100
0 40 80 120 160 200

Time, sec ooosTo

Fig. 16 Temperature variation within the heating zone that includes thermocouples 54 and 87.

both flight and ground test data. The flight profile of thermocouple 87 was programmed for heating the

zone, hence, the flight data for this thermocouple are not shown. As shown in the figure, the simulation

temperature profile for thermocouple 54 is slightly lower than the profile programmed (and flight measured)

for control thermocouple 87. The flight-measured temperature profile for thermocouple 54 is considerably

higher for a portion of the time history. This situation might have been improved by programming the

average temperature or decreasing the zone size again.

The hypersonic wing test structure (HWTS) is a full-scale (85 ft 2 planform area) wing section designed

for a Mach 8 research airplane concept. The structure was constructed with single-sheet, spanwise-stiffened

beaded panels made of Ren6 41 (Teledyne AUvac/Vasco Marketing, Monroe, NC) with heat shields on the

extemal surfaces made of Ren6 41 and TD NiCr. A detailed description of the structure is available [10].

Quartz lamp heaters were fabricated to heat the entire upper and lower surfaces to test this structure at the

calculated Mach 8 temperatures (Fig. 17). The lower surface heater, as shown in Fig. 17(a), was divided

into 47 thermal control zones in the final test configuration. The locations of the control thermocouples

on the heat shield surface are shown. Gaps were provided in the heater to accommodate mechanical load

attachments to the wing structure for combined heating and loading tests.

16
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(b) Initial zones showing temperatures within the

zones.

Heating control zones for the hypersonic wing test structure, lower surface.

An initial heating test series was conducted on the HWTS using a limited number of analog thermal

control channels. The control zone sizes and distribution on the lower surface are shown in Fig. 17(b). Note

that the lamp distribution is uniform within each zone. All of the thermocouple instrumentation shown in

Fig. 17(b) was utilized for temperature measurements, however, only those indicated by the solid symbols

were needed for control purposes. The remainder of the thermocouple measurements provided data on

temperature distributiorts within zones, which is also shown in the figure for three different control zones at

steady-state conditions. Zones 1 and 2 show significant heat losses at the boundaries, most likely caused by

convection and-or radiation losses. Zone 3 shows an intemal control zone, that is, well away from boundary

conditions. Although the temperature deviations of 50 °F within zone 3 are not as large as those in the first

two zones, they are still large enough to cause anomalies belween test and analysis.
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In-flight aerodynamic heating is a function of the difference between the recovery temperature and the

surface temperature. Laboratory radiant heating is a function of the fourth powers of the lamp temperature

and the surface temperature. Because of this fundamental difference in heating, it is important that lamps

be distributed to accommodate this variation within a control zone, particularly in locations where there

is a significant heat sink. Consequently, a computer program [1] was written to calculate the surface flux

distribution for a specified heater-lamp configuration. The program can address many variables as indicated

in Fig. 18.

Shield U2
X dimension Lamps D

Specimen surface

I
X=0

Fig. 18

L.. Calculation range _'_-!
I

X0 XMAX

Heater-specimen configuration for lamp flux computer program.

900573

Lamp configuration data from the horizontal stabilizer test setup at a midspan station were entered into

the lamp flux program for analysis. Figure 19 compares the net radiant flux required to maintain the flight-

10--

8

Normal
surface 6

flux,
Btu 4

ft 2-sec

2

,, O Calculated from flight data

_ux_rogram

-

I I I I I I
10 20 30 40 50 60

Distance from leading-edge lamps, in.
90O574

Fig. 19 Normal surface flux distribution on a cross section of the X-15 horizontal stabilizer 75 sec into

the flight.
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temperaturetimehistorywith thatprovidedby thelampsascomputedby theprogramfor a time75sec
into theflight. A comparisonof thecalculatedcurveandtheflightdataindicatesthatthedistributionis
well-matchedexceptatthemainbeamlocation.At thatlocation,thestructuraldiscontinuity(thatis,large
heatsink)is notcompensatedfor by acorrespondingheatfluxdiscontinuity.Thisheatflux discontinuity
couldbebettersimulatedin thelaboratoryby addingseparatecontrolzonesoverthelengthof thesparand
placinginsulatorshieldsbetweenthelampzones.

Endeffectsontheboundariesofinfraredheatersystemscanbeamajorsourceof temperatureerror.The
problemandsomepotentialsolutionsareshowninFig.20. Thedataforthis figurewerecalculatedusing

10

Flux, i

•Btu _/"_(_ End effect

ft2"sec i_ __Tt)iiieiifmmll_p_t°irlus end re flecto r

I I I I I
0 2 4 6 8 10

Distance from end of specimen, in.
9OO575

Fig. 20 Infrared heater end effects.

the lamp flux computer program discussed earlier (see Fig. 18). Figure 20 shows the calculated heat flux

received by the first 10 in. of the test specimen for various reflector lamp arrangements. Curve 1 shows
the heat flux when the reflector ends at X = 0, and there is no end reflector and no added lamps. Curve

4 is the same as curve 1 except lamps were added near X = 0. Curve 2 is the same as curve 1 except the

reflector and lamps were extended 10 in. beyond the specimen surface. Curve 3 is the same as curve 1 except
an end reflector was added and curve 5 is the same as curve 3 except that additional lamps were installed.

This figure is not intended to present all the possible heater designs to eliminate or to minimize end effects.

The results shown do illustrate that this is a very serious problem that must be considered when designing

infrared radiation heaters. Based on the results shown in this figure, it can be concluded that as a minimum,

the reflector must extend approximately 10 in. beyond the test specimen and that an end reflector is required

if the heat loss resulting from end effects are to be kept to a reasonable amount.
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Figure21demonstrateshowtheend-effectproblemwassolvedfor therootsectionof theX-15hor-
izontalstabilizer.This is aviewlookingforwardat thetrailing-edgebeamandalongtherootrib of the
stabilizer.Endreflectorsandadditionallampswereaddedto theuppcrandlowerheatersystems,asshown
in thefigure. In addition,an independentheaterwasaddedto provideadditionalheatto theroot rib.
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Fig. 21 X-15 horizontal stabilizer root-rib heater.
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Fig. 22 X-15 wing.

E-20336

The X-15 wing, shown in Fig. 22, is a short-span, thin, low-aspect ratio, multispar structure. It has three

main ribs: a root rib, a midspan rib and a tip rib. The leading edge is a segmented slug or heat sink having a

constant radius. The wing-to-fuselage attachments consist of five A-frame assemblies which are an integral

part of the wing. The wing skins, tip rib, front spar, and structure forward of the front spar are constructed of

Inconel-X; the remainder of the wing structure is of titanium alloy. The wing is shown in the condition it was

received in the laboratory, after removal from the aircraft. The nonuni formity of the wing-surface emissivity

is obvious. A portion of the upper surface quartz heater syslem is shown in a raised or open position.
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Fig. 23 Effect of surface emissivity on power.

The effects of surface emissivity on the power required for a radiation heating system is illustrated in

Fig. 23. Part of the total radiant heat flux from the heater is absorbed by the test specimen and the remainder
of the heat flux is reflected. The amount of the heat absorbed and reflected depends on the absorptivity

and the reftectivity of the test specimen. Since absorptivity plus reflectivity equals 1.0, the amount of heat

absorbed depends on the emissivity. Therefore, it is obvious that the minimum power required will occur

when the emissivity of the test specimen is equal to 1.0. Likewise, the maximum power will be required

when the reflectivity is 1.0. Consequently, the test specimen should have a uniform emissivity if consistent

results are to be obtained from infrared heating tests.

Preliminary heating tests of the X-15 wing [2] showed discrepancies between the simulation tempera-

tures measured within each zone and the calculated temperatures. It was decided that the lack of uniformity
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Fig. 24 X-15 wing test illustrating emissivity effects.

in the surface emissivity was the most likely problem, so the wing was painted with a fresh coat of high

emissivity paint. Figure 24 shows the effect of the painted surface on measured temperatures. Before

painting, the control thermocouple (solid line) was in an area of higher reflectivity than the area of the

thermocouple shown with the circular symbols. This resulted in a large thermal gradient within the controlled

zone. Gradients such as this produce unrealistic thermal stresses and corresponding test anomalies. After

the wing was painted, the undesirable gradient was virtually eliminated.
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Figure25demonstrateshowhighemissivitypaintcanbeusefulforreducingheatersystemendeffects.A
quartzheatersystemwithaceramicreflectorwasusedinanattempttoheattheuppersurfaceof ahoneycomb

400

Temperature,
*F 200

Black paint
Unpainted

o

Ceramic reflectorQuartz lamps I

 oao390 °F mechanism

IIIllll'"'""lllllllllllTeStpanel [I III11
I -320 °F (Liquid nitrogen)

900579

Fig. 25 Emissivity effect on a honeycomb panel.

panel [11] to a constant 390 °F. The lower panel surface was held at -320 °F with liquid nitrogen. As can

be seen, the heater system could not be extended past the edge of the panel because of the presence of a

loading mechanism. Controlling the panel centerline to 390 °F, with the panel unpainted, produced a severe

temperature gradient across the panel. The outer one-quarter of the panel upper surface was painted with

black paint, and the subsequent repeat test still showed a temperature gradient, but one which was much less

severe. Thus, this single change produced a more uniform upper surface temperature distribution.

SUMMARY

Thermal structural testing is a complex, time-consuming, and costly process, especially when attempting

to provide high-quality experimental data. Several key elements of hot structures testing were addressed

including data acquisition and control, temperature and strain measurement, and quartz lamp heater systems.

The following summarizes the major points of this paper.

Extensive temperature measurement is the key to understanding and evaluating hot structures test results.

Thermal control zones must be kept to a minimum size to achieve good-quality temperature distributions

over the entire test article. The infrared heater system may have to be tailored to provide the required heat

flux distribution within a control zone. Proper test article surface emissivity is critical to thermal simulation

with infrared heating systems. Special attention must be given to the treamaent of boundary conditions to

avoid troublesome temperature distributions.
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Temperaturesweremeasuredfrom-320 °F to 2600°F usingthermocouples.Strainshavebeenmea-
suredfrom-320 °Fto 1500°F using a combination of foil, weldable, and capacitive strain gages. Accurate

apparent strain data are essential to insure correct strain measurements at temperatures other than room

temperature. The iron-chromium-aluminum (Fe-Cr-A1) gages appear to offer strain measurement at tem-

peratures up to 1900 °F in limited applications.

The data acquisition and control system (DACS) can be considered the "heart" of hot structural test-

ing, because accurate thermal control and clean data recording are critical elements to effective elevated-

temperature testing. The DACS has provided the custom environment needed to conduct tests without data

contamination to mislead the test data analyst.

With the renewed interest in hypersonic flight, unique test articles necessary to mature hot structures

technology will demand the development of newer and broader test techniques. Of special note will be an

ever greater need to perform combined thermal-mechanical tests on structures containing hydrogen.
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